Elastic deformation of twinned microstructures
نویسندگان
چکیده
Many crystalline materials exhibit twinned microstructures, where well-defined orientation relationships define the special symmetry between different, elastically anisotropic twin variants. When such twins are subjected to external loading, additional internal stresses necessarily occur at the twin boundaries in order to maintain compatibility. These compatibility stresses are constant inside each variant in repeating stacks of twins and considerably affect the local stress state. In this paper, we use anisotropic linear elasticity to derive general analytical solutions for compatibility stresses in a stack of twin variants in arbitrary materials, for arbitrary variant volume fractions and twin types, subjected to arbitrary applied stresses. By considering two examples, growth twins in electrodeposited Cu and B19' martensite twins in the shape memory alloy NiTi, we further demonstrate that compatibility stresses can considerably alter the preferred slip systems for dislocation plasticity as well as the effective macroscopic behaviour of twinned microstructures.
منابع مشابه
Atomistic deformation mechanisms in twinned copper nanospheres
In the present study, we perform molecular dynamic simulations to investigate the compression response and atomistic deformation mechanisms of twinned nanospheres. The relationship between load and compression depth is calculated for various twin spacing and loading directions. Then, the overall elastic properties and the underlying plastic deformation mechanisms are illuminated. Twin boundarie...
متن کاملComparison of Two Computational Microstructure Models for Predicting Effective Transverse Elastic Properties of Unidirectional Fiber Reinforced Composites
Characterization of properties of composites has attracted a great deal of attention towards exploring their applications in engineering. The purpose of this work is to study the difference of two computational microstructure models which are widely used for determining effective transverse elastic properties of unidirectional fiber reinforced composites. The first model based on the classic me...
متن کاملEvolution of recorded microstructures in minerals during cooling of Zarrin intrusion, evidence for dynamic deformation
The Zarrin granitoids is located in the west of Yazd block, Central Iran. Zarrin granitoids exhibit mylonitic rocks ranging from protomylonitic to mylontic. In Zarrin granitoids examples of sub-magmatic, microstructures are represented by chessboard patterns in quartz and sub-magmatic fractures in plagioclase, indicating deformation at high-temperature conditions (T > 650º C) and the presence o...
متن کاملNumerical Simulation of Martensitic Microstructures using Global Energy Minimization
A numerical scheme is proposed to generate a microstructure of a martensitic material when subjected to arbitrary boundary conditions. The deformation gradient is decomposed multiplicatively into an elastic strain and a transformation strain. The elastic part ensures compatibility between the (conforming) finite elements. A global energy minimization scheme similar to Genetic Algorithms, yet su...
متن کاملSize Effect and Deformation Mechanism in Twinned Copper Nanowires
Molecular dynamics simulations were performed to demonstrate the synergistic effects of the extrinsic size (nanowire length) and intrinsic size (twin boundary spacing) on the failure manner, yield strength, ductility and deformation mechanism of the twinned nanowires containing high density coherent twin boundaries CTBs paralleled to the nanowires’ axis. The twinned nanowires show an intense ex...
متن کامل